
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/269311682

Introducing ufo.js: A browser-oriented p2p network

Conference Paper · February 2014

DOI: 10.1109/ICCNC.2014.6785359

CITATIONS

7
READS

416

3 authors:

Some of the authors of this publication are also working on these related projects:

The use of accelerometry for human activity recognition, motion segmentation and classification. View project

Digital Biofeedback System for Breast Cancer Home Rehabilitation View project

Antonio Bevilacqua

University College Dublin

15 PUBLICATIONS 169 CITATIONS

SEE PROFILE

Pasquale Boemio

4 PUBLICATIONS 36 CITATIONS

SEE PROFILE

Simon Pietro Romano

University of Naples Federico II

156 PUBLICATIONS 953 CITATIONS

SEE PROFILE

All content following this page was uploaded by Simon Pietro Romano on 18 January 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/269311682_Introducing_ufojs_A_browser-oriented_p2p_network?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/269311682_Introducing_ufojs_A_browser-oriented_p2p_network?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-use-of-accelerometry-for-human-activity-recognition-motion-segmentation-and-classification?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Digital-Biofeedback-System-for-Breast-Cancer-Home-Rehabilitation?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Bevilacqua-2?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Bevilacqua-2?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_College_Dublin?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Bevilacqua-2?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pasquale-Boemio?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pasquale-Boemio?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Pasquale-Boemio?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Pietro-Romano?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Pietro-Romano?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Naples-Federico-II?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Pietro-Romano?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simon-Pietro-Romano?enrichId=rgreq-643a10ff60eec1d5a301f0393fc23ea5-XXX&enrichSource=Y292ZXJQYWdlOzI2OTMxMTY4MjtBUzozMTkzMDMzMjczODc2NDlAMTQ1MzEzOTI1Mzg2NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

UFO.JS 1

Introducing ufo.js: a browser-oriented p2p network

Abstract—In this paper we present ufo.js, a novel network
architecture enabling the development of browser-based peer-to-
peer web applications. ufo.js leverages state-of-the-art technolo-
gies in the field of real time communications in the web and
provides programmers with the functionality needed in order to
embed novel peer-to-peer applications directly into web browsers.

The idea of ufo.js starts when the W3C WebRTC working
group begins to develop the so-called datachannel API. This new
interface allows two web browsers to establish a communication
channel on top of which it is possible to send either raw data or
strings. Ufo.js uses the datachannel as the default communication
means between any pair of peers and hence represents a valid
alternative to classic client-server desktop solutions.

The article describes the design, implementation and deploy-
ment of an ufo.js network, while also presenting the results of
a test campaign aimed at assessing both its performance and
potential overhead.

Index Terms—peer-to-peer architectures, datachannel API,
real-time communication in the web, webrtc, javascript, node.js,
websocket

I. CONTEXT AND MOTIVATIONS

Web applications have been laid on the classical client-
server paradigm since they saw light. This is due to the absence
of appropriate technologies supporting direct communication
between web browsers and clearly entails the inability to
develop web applications based on peer-to-peer protocols.
Among the applications which are most impacted by such
an inability, real-time multimedia systems and file sharing
architectures definitely play a major role. In the depicted sce-
nario, developers are forced to implement dedicated desktop or
mobile applications, without relying on any form of support
from web browsers. Though, support for enabling real-time
communication in the Web is currently gaining momentum
with the two main Internet standardization bodies, the IETF
and W3C [1]. Web Real-Time Communication (WebRTC) is
an upcoming standard that aims to enable real-time commu-
nication among Web browsers in a peer-to-peer fashion. The
IETF RTCWeb and W3C WebRTC working groups are jointly
defining both the APIs and the underlying communication pro-
tocols for setting up and managing a reliable communication
channel between any pair of next-generation Web browsers.

WebRTC core development is currently focused on multi-
media communications and has motivated big players (like,
e.g., Google, Mozilla and Ericsson) in investing significant
resources in this research and engineering effort. Besides
multimedia, the youngest segment of WebRTC technologies
deals with end-to-end data transmission. Specifically, WebRTC
provides an abstraction for a communication channel, named
datachannel, on top of which it is possible to send and receive
both binary (also known as blob) and string data.

We made use of the above mentioned WebRTC data tools,
in conjunction with some other standardized technologies such
as websockets and the NPAPI (Netscape Plugin API) libraries,

in order to develop a novel network architecture called ufo.js,
whose purpose is to provide a complete platform on top of
which it is possible to implement any kind of data-centered
peer-to-peer web applications.

The paper is composed of six sections. In section II we
describe our architecture for peer-to-peer data communications
in the web, by also discussing issues associated with topology
management and components deployment and configuration.
Section III presents some practical aspects related to network
implementation and deployment. Performance figures are illus-
trated in section IV, whereas section V provides a few pointers
to related works in the field of peer-to-peer, web-based and
data-oriented communication. Finally, section VI illustrates
concluding remarks and identifies the main directions of of
our future work.

II. DESIGN

In this section, we describe all the architectural details
underlying the ufo.js network. These involve structural issues
(network topology and organization), as well as behavioral
issues (bootstrap procedure and network conduct).

A. Overview

The ufo.js project has been conceived at the outset by
carving into the stone the following fundamental architectural
constraints:
100% browser-oriented : ufo.js is a fully-fledged platform

on top of which it is possible to implement peer-to-peer
web applications;

ready to use : ufo.js makes available to the programmer a
comprehensive development stack, hence not requiring
any additional components during the implementation
phase;

lightweight : ufo.js minimizes both the number of messages
flowing across the network and the amount of network
information stored at each peer.

The mentioned characteristics make ufo.js a valid choice
over classic desktop solutions for peer-to-peer based applica-
tions development.

B. Components

Ufo.js is a hybrid peer-to-peer network in which we can
identify three different entities:
node : a node is a web page opened inside a browser. Every

node keeps CP_SIZE connections with other nodes, up
to a threshold value of MAX_CP_SIZE. A node is said
to be internal if

CP_SIZE = MAX_CP_SIZE (1)

UFO.JS 2

If instead

CP_SIZE < MAX_CP_SIZE (2)

that node is said to be external. The set of active
connections is named connection pool.

supernode : a supernode is a node providing an entry point
for all the nodes that will bootstrap on the network. When
a node becomes a supernode, it has to publish its address
in order to make it available to all potential peers.

optional server : in this scenario it is possible to add a
central server that simplifies the publishing procedure for
supernodes and provides all other nodes with a list of
public supernodes addresses. Such a server can also make
available application related web pages.

Hereinafter we will consider a full ufo.js implementation
including all of the above mentioned components.

C. Network construction

Nodes and supernodes within the network are arranged as a
connected graph with no orientation. This is achieved through
three different operations: rise, bootstrap and densify.

During the rising phase, a node publishes an address where
it can be contacted by anyone willing to join the peer-to-peer
overlay. If the node in question is already connected to a ufo.js
network, it will make available a new entry point; otherwise,
it will spawn a brand new network. A node accomplishes the
rising phase by registering its address at an auxiliary server
through an HTTP POST request.

As shown in figure 1, the bootstrap operation can be split
into several steps. Let P1 be a web browser outside the
network, SN a supernode already inside the network and S a
subsidiary server.
Phase 1 : P1 sends an HTTP GET request to S, S replies with

the main application page, as well as a cookie containing
an id.

Phase 2 : P1 selects the address of SN in the list contained
inside the received application page, and sends to SN a
peering request.

Phase 2.1 : SN receives the peering request and checks the
size of its connection pool. If CP_SIZE is less than
MAX_CP_SIZE, SN adds P1 to its connection pool and
sends back to it a peering reply. Otherwise, SN forwards
the peering request to a different supernode inside the
network.

If P1 receives a peering reply before a predefined timeout
occurs, it opens a datachannel towards the originator of the
reply. This ends the bootstrap procedure.

In order to improve the robustness of the network, each node
may send new peering requests if its connection pool respects
the following condition:

CP_SIZE+ 1 ≤ N < MAX_CP_SIZE (3)

Each external node has to accept a peering request if the
originator of the request itself is not already present inside
the connection pool. Otherwise it has to forward that request.
This operation is called densification.

Let us consider the scenario in figure 2, with

MAX_CP_SIZE = 3

N = 2

In figure 2(a) P1 holds just one active connection. It then
sends a new peering request to P2. P2 is an internal node and,
according to the densification rules, forwards the request to
P4. P4 is an external node not directly connected to P1. It

P1 P3

P4

P2

P5

(a) Densify request

P1 P3

P4

P2

P5

(b) Densify reply

P1 P3

P4

P2

P5

(c) Densify completed

Fig. 2. Densification phase

then has to accept the request and send its reply backwards to
P1, as shown in figure 2(b). Eventually, P1 and P4 establish
a new connection, as shown in figure 2(c).

D. Routing

Routing over an ufo.js network requires that each node is
provided with a unique ID. In the example shown in paragraph
II-C, such an ID is created by the subsidiary server.

Every packet flowing through the network has the format
shown in figure 3, where:
body is the actual payload of the packet,
type is the payload type,
path is the set of IDs of the nodes crossed by the packet,

UFO.JS 3

S

Phase 2

Phase 3

P1

Phase 1

SN

GET /

Application page
 and Cookie

Send PEERING request

Send PEERING reply

Check
CP_SIZE

Forward PEERING request

Forward PEERING reply

ufo.js
Network

Phase 2

Phase 2.1

Fig. 1. Bootstrap phase

{
type : ’type’,
body : { obj },
path : [...],
isBoozer : true/false

}

Fig. 3. Packet structure

isBoozer is a boolean flag representing packet transmission
mode.

Packets can be sent either in discovery or in direct mode.

A packet sent in discovery mode neither knows its destina-
tion ID nor needs to care about it. Discovery packets proceed
through the network along a random path. Each node selects
the next hop of a discovery packet by choosing randomly
within its own connection pool, excluding all the nodes already
contained into the path field of the packet. If all the nodes in
the pool are already present inside the path, the packet must be
sent back to the previous hop. Just before sending the packet,
the current node adds its ID to the path field. In discovery
mode, the above mentioned isBoozer flag has to be set to
true.

A packet sent in direct mode is destined to a specific ID. A
direct packet contains the path to be followed inside its own
path field. Every node learns the next hop by reading and
removing its ID directly from within the packet. A packet
arrives at destination when its path field is empty. In direct
mode, the isBoozer flag must be set to false.

In figures 4 and 5 we report the flow diagrams associated,
respectively, with events transmission and reception inside a
node.

Start

is boozer
yes

push ID

no

send

send event

Fig. 4. Packet transmission flow

III. IMPLEMENTATION

We have developed a fully-fledged javascript implementa-
tion of ufo.js, composed of:

X an auxiliary server providing the HTML application
pages and managing the list of supernodes;

X an NPAPI (Netscape API) plugin enabling web browsers
to listen to incoming websocket connections;

X a set of javascript classes granting the needed peering
functionality to web browsers.

In the next sections we analyze in some detail all of the above
listed components, by focusing on the adopted technologies,
as well as on how they were employed in ufo.js.

UFO.JS 4

Start

is boozer
no

path == 0

yes

yesno

pop ID

send over
popped ID

evaluate
message

carry
home

receive event

Fig. 5. Packet reception flow

A. Overview

The idea of ufo.js starts when the WebRTC working group
begins to develop the datachannel API. This new interface al-
lows two web browsers to establish a communication channel
on top of which it is possible to send either raw data or strings.
The actual channel allocation is completed as soon as the sig-
naling procedure is over. During the signaling procedure, web
browsers exchange two SDP (Session Description Protocol)
messages, as mandated by the so-called offer/answer model.
Both messages provide a description of the session being
opened and carry fundamental information, including, among
other things, ICE candidates and cryptographic algorithm in
use.

Ufo.js uses the datachannel as the default communication
channel between any two peers. Offer and answer messages
are properly minimized and then exchanged through peering
request and related peering reply packets. Both the peering
packet and the peering reply packet contain all the essential
fields required to properly construct the original SDP string,
as well as an originator field carrying the ID of the node that
generated it.

Figure 6 shows the structure of an ufo.js packet whose
body field contains a peering packet. An ufo.js packet carrying
a peering packet must have its type field set to peering
and its isBoozer flag set to true. A node sending a peering
request doesn’t know a priori which peer node will accept
it. Though, such a node exists for sure in any case, due
the previously described mechanism based on bootstrap and
densify procedures. For this reason, peering packets are sent
in discovery mode.

Figure 7 sketches the structure of an ufo.js packet whose
body field contains a peering reply packet. An ufo.js packet
carrying a peering reply packet must have its type field set
to peeringReply and its isBoozer flag set to false. A node

{
type : ’peering’,
body : {

originator : ’originatorID’,
PORT_NUMBER : ’port_number’,
EXTERNAL_ADDR : ’external_address’,
CANDIDATE_11 : ’candidate_11’,
...

},
path : [...],
isBoozer : true

}

Fig. 6. Peering packet

sending a peering reply packet is made aware of the destination
node by reading its ID in the originator field inside the
previously received peering packet. The path to be followed
has certainly been carved in the path field of such a packet.

{
type : ’peeringReply’,
body : {

originator : ’originatorID’,
PORT_NUMBER : ’port_number’,
EXTERNAL_ADDR : ’external_address’,
CANDIDATE_11 : ’candidate_11’,
...

},
path : [...],
isBoozer : false

}

Fig. 7. Peering reply packet

B. Auxiliary server

We developed an auxiliary server by leveraging the Node.js
framework. Such a server is therefore entirely written in
javascript and uses Redis to manage supernodes information.
The current implementation of the auxiliary server supports
two operations:
GET on /nodepage.html : when the server receives a GET

request on /nodepage.html, it generates a random string
and retrieves from its cache the list of active supernodes.
The generated string is added to the Set-Cookie
header field of the HTTP response, while the supernodes
list is included inside the HTML application page.

POST on /serverize : when the server receives a POST re-
quest on /serverize, it takes the requestor ID from the
cookie and stores its location information inside the
cache. If the requesting ID is already present inside the
cache, the server simply updates such information.

C. Supernode plugin

We used the C++ NPAPI/ActiveX libraries in order to create
a plugin suitable for all browsers. This plugin allows a node
to become a supernode by enabling it to open a web socket
in passive mode.

UFO.JS 5

D. Browser side classes

We developed a collection of javascript classes that im-
plement all the routing and network management algorithms.
These classes are compressed in a bundle and included inside
the application page.

IV. TESTS

For our tests, nodes and supernodes run on Macbooks Pro
2.4 GHz Intel Core 2 Duo with OS X version 10.8.2. We also
use a Raspberry PI ArmV6 with Arch Linux version 3.6.11-
4-ARCH+ (shown in figure 8) as publishing server, running
Node.js version 0.8.18 and Redis version 2.6.8. Ufo.js has been
deployed on such a server.

The entire work we have presented, as well as the exper-
imental campaign herein described, are targeted for Google
Chrome Canary and Mozilla Firefox Nightly. In particular, as
of 5th April 2013:

X Google Chrome, version 27.0.1416.0 canary, brings a
quite limited implementation of datachannels. As a mat-
ter of fact, it is not yet possible neither to create reliable
datachannels nor send binary data. Therefore, we are
not able to send messages whose payload is bigger than
an MTU (about 1200 bytes); all out-of-bound messages
are dropped without errors, exceptions or warnings.
However, Google Chrome Canary shows a very stable
and reliable behavior during both its ordinary usage and
our stress test campaign. We did not experience any
crashes or similar types of failures.

X Mozilla Firefox, version 21.0a1 nightly, contains an ad-
vanced implementation of datachannels. Within Firefox,
we can create reliable datachannels and use them to
transfer any kind of information (including binary data)
with varying message sizes. Though, Firefox datachan-
nel implementation is not the final and stable one: some
methods are still in their draft version, while others are
just temporary (e.g., the connectDataConnection
function, that will soon disappear). Moreover, Firefox
exhibited a temperamental behavior with occasional
crashes during our tests with datachannels.

The ufo.js implementation here under test uses the above
mentioned datachannel version, currently in hard beta. There-
fore, we decided to conduct a preliminary test campaign aimed
to evaluate datachannel performance in the presence of the two
mentioned browser implementations.

A. Datachannel

As a baseline, to assess pure datachannel time performance
we make use of a demo page whose only purpose is to
instantiate and connect a datachannel between two peers.
During this test, as shown in figure 9, we evaluate potential
differences between Chrome (blue line) and Firefox (red line)
regarding the implementation of the standard datachannel
API. It clearly comes out that, although Firefox shows a
slightly slower trend, both browsers ensure a quite constant
datachannel creation/connection time.

Fig. 8. Ufo.js test server

Fig. 9. Datachannel allocation time

B. Memory occupation

We further investigate memory consumption at a supernode
by exploiting the profiling features made available by Chrome
Developer Tools. Let N1 be the node under test. The testing
procedure runs as follows:

1) N1 contacts the auxiliary server and gets the page shown
in figure 10;

2) N1 clicks on the Increase cPool button, setting its
MAX CP SIZE to 9999;

3) N1 clicks on the Serverize button, activating the supern-
ode plugin and hence becoming a supernode;

4) a number of simple nodes contact N1 and open a
datachannel towards it. This is done by pressing on the
page of each node the Test button, that creates 10 more
nodes and connects them to N1.

We take a heap snapshot every time CP SIZE of N1

increases by 10, starting from 0 and up to a threshold of 110.
The total amount of memory required by the application starts
from 1.9 Mb for 10 nodes and increases roughly by 30 Kb
every 10 nodes, up to 2.7 Mb in the presence of 110 nodes,
as shown in figure 11.

Figure 12 reports the connection pool memory occupation
with blue bars, while the red line indicates its occupation as
a percentage of the total busy memory.

UFO.JS 6

Fig. 10. Ufo.js application page

Fig. 11. Ufo.js application memory consumption

C. Normal network usage

In this last section we evaluate the average behavior of the
overall system by looking at how nodes join and alter the
network. This test runs as follows:

1) We open the application page shown in figure 10 and
click on the Serverize button, hence creating a new
supernode;

2) for each new node to be inserted in the network, we
open the application page in a new window, select the
address of the supernode within the combo box on the
left and click on the Bootstrap button.

In this scenario no changes are committed to the nodes and
supernodes creation procedure. Therefore, MAX CP SIZE
is always equal to 4. After the bootstrap phase, the network
looks like the one in figure 13(a) (node IDs are properly
contracted from 16 to 3 characters in order to make the figure
more readable). Nodes are arranged as a tree with a maximum
depth of 2 levels. In particular, 4 level-1 nodes are connected
to the supernode (3TY) and 9 level-2 nodes follow. In table I
we report the bootstrap times for every node.

After the bootstrap phase we launch the densification pro-
cedure for every node that allows it. In particular, all level-2
nodes, as well as DZY, can do it.

Fig. 12. Supernode connection pool memory occupation

TABLE I
NETWORK BOOTSTRAP TIMES

NAME LEVEL TIME (ms)

DzY 1 673
x4z 1 648
jMK 1 369
oXI 1 618
vuA 2 734
W2j 2 366
r4Z 2 498
aH1 2 566
cuf 2 447
cNj 2 697
tvP 2 562
vjN 2 840
Ynn 2 847

As an example, let us consider node VUA, whose densifi-
cation procedure progresses throughout the following steps:

X VUA sends a densification request to DZY;
X DZY checks its connection pool and finds VUA is

already present in it;
X DZY forwards the request to 3TY;
X 3TY checks its connection pool size and observes it is

already full;
X 3TY randomly picks a node from its pool. It chooses

X4Z and forwards the request to it;
X X4Z, for the same reason as 3TY, forwards the request

to the randomly chosen node W2J;
X W2J can accept the request and replies to VUA allowing

the creation of a new connection.

In figure 13(b) we show a possible structure of the network
after all the nodes who were eligible for the densification
procedure have completed it. Light blue links are those created
with densification. As we can notice by comparing figures
13(a) and 13(b), the network structure moves from a tree-
shaped graph to a connected graph with no particular shape.
This behavior provides the network with a high level of
reliability by creating new paths connecting nodes and hence
becoming more robust to node failures.

UFO.JS 7

3tY

DzY x4z jMK oXI

aH1 cNj

Ynn

vuA

r4Z

W2j
cuf

tvP vjN

(a) Network after bootstrap

DzY

x4z

jMK

oXI

aH1

cNj
Ynn

r4Z

W2j

cuf

tvP

vjN

3tY

vuA

(b) Network after densification

Fig. 13. Network creation use case

V. RELATED WORK

The datachannel technology is a very powerful one and
can potentially impact the way we think of the entire web
application paradigm. Though, the datachannel APIs currently
provide just a partial (and in any case unstable) implemen-
tation. This entails that applications based on these emerging
APIs cannot be considered other than beta releases, if not just
proof-of-concept demonstrations.

Companies which are currently leading the development and
browser integration efforts associated with the datachannel,
such as Google and Mozilla, do provide some demo pages
allowing users to test the state of the art of the above
mentioned APIs. Google Chrome’s test page can be found
at [2], while Mozilla Firefox testing site is reachable at [3].

Among real life applications using the datachannel as best
as they can, we should definitely mention shareit [4] and
sharefest [5]. Such applications allow browsers to share files
in the absence of any form of upload to external servers, as
opposed to well-known services such as Dropbox or Google
Drive. Both shareit and sharefest use an external server hold-
ing and managing a connection to each peer; these connections
are used to accomplish all the signaling procedures between
peers. Thus the actual p2p communication happens during file

transfers.
As we can infer, all of the above mentioned applications

introduce a user-friendly front-end towards the datachannel
APIs. Their main focus is therefore to provide browsers with
fairly scalable file sharing capabilities.

On the other hand, ufo.js aims to create a pure p2p
overlay network exploiting all the potential of datachannel-
aware browsers. The challenge is to let this approach become
widely available and hence represent a real opportunity for the
development of advanced p2p applications that are unaware
of the inner p2p mechanisms adopted, but just focus on the
specific business logic.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented ufo.js, a web stack that makes
it possible to develop advanced web applications based on
a peer-to-peer communication paradigm. Ufo.js takes care of
both routing and signaling, hence providing self-organizing
networking mechanisms based on a pure peer-to-peer ap-
proach. We discussed the main issues we had to face while
designing and implementing our framework, which leverages
state-of-the-art achievements in the field of real-time com-
munication in the web. A preliminary set of tests has been
conducted in order to assess the performance achieved by the
currently available browser implementations of the so-called
datachannel API. Then, a thorough experimental campaign
has been carried out with the aim of evaluating the overhead
introduced by our p2p javascript library, in terms of network
topology setup time (involving a bootstrap phase followed by
a densification phase), as well as memory consumption. We do
believe that the architecture we propose unveils an unprece-
dented potential to all web developers who have a stake in
the design of innovative peer-to-peer applications and who are
looking at the recent WebRTC/RtcWeb standardization efforts
as the necessary missing brick. As to our future work, we plan
to stabilize the current implementation of ufo.js by making it
more reliable and even lighter, with the final objective of using
it as a structural layer for file sharing and multimedia server-
less web applications.

REFERENCES

[1] S. Loreto, and S. P. Romano. Real-Time Communications in the
Web: Issues, Achievements, and Ongoing Standardization Efforts. In-
ternet Computing, IEEE , vol.16, no.5, pp.68-73, Sept.-Oct. 2012. doi:
10.1109/MIC.2012.115.

[2] Google Chrome demo page. [Online]. Available: http://webrtc.
googlecode.com/svn/trunk/samples/js/demos/html/dc1.html

[3] Mozilla Firefox demo page. [Online]. Available: http://mozilla.github.
com/webrtc-landing/data test.html

[4] Jesús Leganés Combarro, ”ShareIt!”. [Online]. Available: http://shareit.
piranna.5apps.com/

[5] Peer5, ”Sharefest”. [Online]. Available: http://sharefest.peer5.com/

View publication statsView publication stats

http://webrtc.googlecode.com/svn/trunk/samples/js/demos/html/dc1.html
http://webrtc.googlecode.com/svn/trunk/samples/js/demos/html/dc1.html
http://mozilla.github.com/webrtc-landing/data_test.html
http://mozilla.github.com/webrtc-landing/data_test.html
http://shareit.piranna.5apps.com/
http://shareit.piranna.5apps.com/
http://sharefest.peer5.com/
https://www.researchgate.net/publication/269311682

	Context and Motivations
	Design
	Overview
	Components
	Network construction
	Routing

	Implementation
	Overview
	Auxiliary server
	Supernode plugin
	Browser side classes

	Tests
	Datachannel
	Memory occupation
	Normal network usage

	Related work
	Conclusions and future works
	References

